4.8 Article

Dual -functional carbon-based solid acid-induced hydrothermal conversion of biomass saccharides: catalyst rational design and kinetic analysis

期刊

GREEN CHEMISTRY
卷 23, 期 21, 页码 8458-8467

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1gc01968f

关键词

-

资金

  1. National Key R&D Program of China [2018YFB1501500]
  2. National Science Fund for Distinguished Young Scholars [51725603]

向作者/读者索取更多资源

The study developed a dual-functional carbon-based solid acid catalyst for the cascade conversion of saccharides, achieving high yields of levulinic acid and furfural. The catalyst exhibited excellent hydrothermal stability, with high conversion rates and low activation energy.
The isomerization-dehydration cascade conversion on the saccharide platform is a pivotal route for biomass valorization, although it exhibits a specific reaction complexity that makes achieving an efficient conversion a highly technical challenge. The rational design of novel versatile solid acids is deemed to be the key to improving the cascade catalytic performance. In this paper, a dual-functional carbon-based solid acid catalyst (DFCSA) with tunable Bronsted/Lewis acid sites was developed for the cascade conversion of saccharides. The combined modification of H3PO4 and HNO3 on the carbon substrate contributed to the grafting of protonated moieties with a reasonably porous structure. With the aid of AlPO4, which has an orthorhombic crystal structure, the newly developed catalyst was able to achieve good performance for the subsequent hydrothermal conversion. Under optimal conditions, glucose and xylose were transformed with high product yields: 38.2 mol% levulinic acid and 69.7 mol% furfural, respectively. In addition, the catalyst displayed excellent hydrothermal stability, with only a slight degradation in activity after 10 cycles, which was ascribed mainly to the high thermal stability of AlPO4 and the firm grafting of the surface functional groups. As shown by the kinetic analysis, the DFSCA catalyst had a higher conversion rate and lower activation energy in the cascade conversion of xylose than that of glucose, leading to a better yield of furfural.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据