4.4 Article

Inhibition of Mild Steel Corrosion by 4-benzyl-1-(4-oxo-4-phenylbutanoyl)thiosemicarbazide: Gravimetrical, Adsorption and Theoretical Studies

期刊

LUBRICANTS
卷 9, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/lubricants9090093

关键词

corrosion inhibition; phenylbutanoyl; HCl; weight loss; DFT

资金

  1. Universiti Kebangsaan Malaysia (Malaysia)
  2. University of Technology (Iraq)

向作者/读者索取更多资源

Gravimetric measurements were used to study the inhibitory effect of BOT on the corrosion of mild steel in 1.0 M HCl. Results showed that higher inhibitor concentrations led to increased damping efficiency, with both chemisorption and physisorption contributing to the protective mechanism. Experimental and theoretical findings indicated excellent harmony in the inhibitive performance of BOT.
Gravimetric measurements were applied to study the inhibitory effect of 4-benzyl-1-(4-oxo-4-phenylbutanoyl)thiosemicarbazide (BOT) on the corrosion of mild steel in 1.0 M HCl. BOT has a good inhibitory efficacy of 92.5 percent at 500 ppm, according to weight loss results. The effect of inhibitor concentration on the mild corrosion behavior of steel was investigated and it was discovered that the higher the inhibitor concentration, the higher the damping efficiency. The results confirm that BOT is an effective corrosion inhibitor for mild steel in the presence of 1.0 M HCl. Furthermore, the higher protection efficiency with increasing temperature and the free energy value showed that BOT molecules participate in both chemisorption (coordination bonds between the active sites of BOT molecules and d-orbital of iron atoms) and physisorption (through the physical interactions on the mild steel surface). The adsorption mechanism on the mild steel surface obeys the Langmuir adsorption isotherm model. Quantum chemical calculations based on the DFT calculations were conducted on BOT. DFT calculations indicated that the protective efficacy of the tested inhibitor increased with the increase in energy of HOMO. The theoretical findings revealed that the broadly stretched linked functional groups (carbonyl and thionyl) and heteroatoms (sulfur, nitrogen and oxygen) in the structure of tested inhibitor molecules are responsible for the significant inhibitive performance, due to possible bonding with Fe atoms on the mild steel surface by donating electrons to the d-orbitals of Fe atoms. Both experimental and theoretical findings in the current investigation are in excellent harmony.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据