4.6 Review

Pool boiling review: Part I-Fundamentals of boiling and relation to surface design

期刊

出版社

ELSEVIER
DOI: 10.1016/j.tsep.2021.101024

关键词

Pool boiling; Bubble incipience; Growth; Departure; Enhancement

资金

  1. Engineering and Physical Sciences Research Council, UK [EP/S019502/1]
  2. EPSRC [EP/S019502/1] Funding Source: UKRI

向作者/读者索取更多资源

Pool boiling is an effective heat transfer mode that can transfer large amounts of heat with small temperature difference. Research on pool boiling fundamentals is crucial for understanding bubble dynamics and improving surface designs. Research focuses on factors affecting boiling processes, such as gas/vapour entrapment and nucleation site stability, to enhance heat transfer.
The pool boiling process is one of the most effective heat transfer modes capable of transferring large amounts of heat with small temperature difference between the heated surface and the fluid. In addition, fundamental knowledge of pool boiling processes is the starting point of flow boiling research and applications. It is therefore no surprise that it has been, and still is, the subject of extensive research globally for quite some time and a critical analysis is now required in order to move forward with enhanced surface designs. The current on-going research focuses on the understanding of boiling fundamentals including bubble generation, growth and bubble dynamics. In this context, fluid-surface interaction is critical. In the first part of this two-part paper we present the factors and parameters affecting the above, starting with the criteria for gas/vapour entrapment, nucleation site stability and the superheat required for heterogeneous nucleation. The models predicting the incipience superheat are critically described, classified into phase instability and superheated boundary-layer based models. This first part includes bubble growth and departure models, elucidating the effect of surface topology and wettability that can inform and facilitate the design of enhanced surfaces that are presented in Part II [10]. Three fluids of industrial interest, i.e. FC-72, HFE7100 and water were used through the discussion, as examples, to represent low and high surface tension fluids and help the understanding of surface-fluid interactions and relation to possible heat transfer enhancements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据