4.3 Article

Adaptive optics for high-resolution imaging

期刊

NATURE REVIEWS METHODS PRIMERS
卷 1, 期 1, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/s43586-021-00066-7

关键词

-

资金

  1. NIH [U01NS103489, R01 EY018339, R01 EY029808]
  2. European Research Council [695140]

向作者/读者索取更多资源

Adaptive optics is a technique for correcting optical aberrations that has been widely applied in astronomy, vision science, and microscopy. It allows for the detection of retinal changes at the cellular level, study of visual system operation, assessment of ocular health, and advancements in imaging of thick tissue specimens.
Adaptive optics (AO) is a technique that corrects for optical aberrations. It was originally proposed to correct for the blurring effect of atmospheric turbulence on images in ground-based telescopes and was instrumental in the work that resulted in the Nobel prize-winning discovery of a supermassive compact object at the centre of our galaxy. When AO is used to correct for the eye's imperfect optics, retinal changes at the cellular level can be detected, allowing us to study the operation of the visual system and to assess ocular health in the microscopic domain. By correcting for sample-induced blur in microscopy, AO has pushed the boundaries of imaging in thick tissue specimens, such as when observing neuronal processes in the brain. In this primer, we focus on the application of AO for high-resolution imaging in astronomy, vision science and microscopy. We begin with an overview of the general principles of AO and its main components, which include methods to measure the aberrations, devices for aberration correction, and how these components are linked in operation. We present results and applications from each field along with reproducibility considerations and limitations. Finally, we discuss future directions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据