4.6 Article

Squeezed hole spin qubits in Ge quantum dots with ultrafast gates at low power

期刊

PHYSICAL REVIEW B
卷 104, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.104.115425

关键词

-

资金

  1. Swiss National Science Foundation
  2. NCCR SPIN
  3. Georg H. Endress Foundation

向作者/读者索取更多资源

The study proposes a minimal design modification of planar devices to enhance interactions for low-power ultrafast quantum operations. By establishing an asymmetric potential that strongly compresses the quantum dot, the confinement-induced spin-orbit interaction can be turned on and off at will in state-of-the-art qubits.
Hole spin qubits in planar Ge heterostructures are one of the frontrunner platforms for scalable quantum computers. In these systems, the spin-orbit interactions permit efficient all-electric qubit control. We propose a minimal design modification of planar devices that enhances these interactions by orders of magnitude and enables low power ultrafast qubit operations in the GHz range. Our approach is based on an asymmetric potential that strongly squeezes the quantum dot in one direction. This confinement-induced spin-orbit interaction does not rely on microscopic details of the device such as growth direction or strain and could be turned on and off on demand in state-of-the-art qubits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据