4.6 Article

Amelioration of systemic inflammation via the display of two different decoy protein receptors on extracellular vesicles

期刊

NATURE BIOMEDICAL ENGINEERING
卷 5, 期 9, 页码 1084-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41551-021-00792-z

关键词

-

资金

  1. Swedish foundation of Strategic Research (SSF-IRC)
  2. ERC CoG
  3. Swedish Medical Research Council

向作者/读者索取更多资源

This study optimized the loading of two different therapeutic protein receptors onto extracellular vesicles through genetic engineering and protein moiety screening, leading to alleviation of inflammation-related diseases.
The loading of two different protein therapeutics onto extracellular vesicles can be optimized by genetically engineering the parent cells, as shown for extracellular vesicles displaying decoy receptors for two pro-inflammatory cytokines. Extracellular vesicles (EVs) can be functionalized to display specific protein receptors on their surface. However, surface-display technology typically labels only a small fraction of the EV population. Here, we show that the joint display of two different therapeutically relevant protein receptors on EVs can be optimized by systematically screening EV-loading protein moieties. We used cytokine-binding domains derived from tumour necrosis factor receptor 1 (TNFR1) and interleukin-6 signal transducer (IL-6ST), which can act as decoy receptors for the pro-inflammatory cytokines tumour necrosis factor alpha (TNF-alpha) and IL-6, respectively. We found that the genetic engineering of EV-producing cells to express oligomerized exosomal sorting domains and the N-terminal fragment of syntenin (a cytosolic adaptor of the single transmembrane domain protein syndecan) increased the display efficiency and inhibitory activity of TNFR1 and IL-6ST and facilitated their joint display on EVs. In mouse models of systemic inflammation, neuroinflammation and intestinal inflammation, EVs displaying the cytokine decoys ameliorated the disease phenotypes with higher efficacy as compared with clinically approved biopharmaceutical agents targeting the TNF-alpha and IL-6 pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据