4.7 Article

3D Ultralight Hollow NiCo Compound@MXene Composites for Tunable and High-Efficient Microwave Absorption

期刊

NANO-MICRO LETTERS
卷 13, 期 1, 页码 -

出版社

SHANGHAI JIAO TONG UNIV PRESS
DOI: 10.1007/s40820-021-00727-y

关键词

3D hollow hierarchical architecture; Tunable EAB; High-performance microwave absorption; Ultralight

资金

  1. National Natural Science Foundation of China [52073010]
  2. Beijing Natural Science Foundation [2214069]

向作者/读者索取更多资源

The 3D hollow hierarchical architectures designed to inhibit stack of MXene flakes have shown promising potential for lightweight, high-efficient microwave absorbers with tunable absorption properties. This study demonstrates a simple strategy for constructing MXene-based composites to achieve high-performance microwave absorption materials.
The 3D hollow hierarchical architectures tend to be designed for inhibiting stack of MXene flakes to obtain satisfactory lightweight, high-efficient and broadband absorbers. Herein, the hollow NiCo compound@MXene networks were prepared by etching the ZIF 67 template and subsequently anchoring the Ti3C2Tx nanosheets through electrostatic self-assembly. The electromagnetic parameters and microwave absorption property can be distinctly or slightly regulated by adjusting the filler loading and decoration of Ti3C2Tx nanoflakes. Based on the synergistic effects of multi-components and special well-constructed structure, NiCo layered double hydroxides@Ti3C2Tx (LDHT-9) absorber remarkably achieves unexpected effective absorption bandwidth (EAB) of 6.72 GHz with a thickness of 2.10 mm, covering the entire Ku-band. After calcination, transition metal oxide@Ti3C2Tx (TMOT-21) absorber near the percolation threshold possesses minimum reflection loss (RLmin) value of - 67.22 dB at 1.70 mm within a filler loading of only 5 wt%. This work enlightens a simple strategy for constructing MXene-based composites to achieve high-efficient microwave absorbents with lightweight and tunable EAB.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据