4.6 Article

Constructing anion vacancy-rich MoSSe/G van der Waals heterostructures for high-performance Mg-Li hybrid-ion batteries

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 9, 期 40, 页码 23276-23285

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1ta07787b

关键词

-

资金

  1. National Natural Science Foundation of China [21776052, 22078078]

向作者/读者索取更多资源

The study constructed an anion vacancy-rich MoSSe and graphene van der Waals heterostructure (v-MoSSe/G) to enhance ion diffusion rate and reduce voltage drop effectively.
Compared with the strategy of expanding MoS2 interlayer spacing, constructing van der Waals heterostructures of MoS2 and graphene (MoS2/G) has proven to be a more effective method to facilitate the ion diffusion rate in host materials. However, the reduced adsorption energy of intercalated metal ions at the active sites of MoS2/G interlamination causes a rapid voltage drop during discharge processes, resulting in an inferior energy density. Herein, we constructed anion vacancy-rich MoSSe and graphene van der Waals heterostructures (v-MoSSe/G). By adjusting the Se doping amount, v-MoSSe/G with an S : Se ratio of 1 : 1 exhibits the most anion vacancies. Compared with MoS2/G heterostructures, density functional theory calculations proved that more anion vacancies in v-MoSSe/G can further reduce the ion diffusion barriers and increase the adsorption energy of the intercalated ions, thereby greatly enhancing the ion diffusion rate and suppressing the rapid voltage drop during discharge processes. Therefore, for rechargeable Mg-Li hybrid-ion batteries, v-MoSSe/G realizes a Mg2+/Li+ co-intercalation even at 1000 mA g(-1), and also delivers excellent cycling performance, rate capability, and long-term cycling stability with a reversible capacity of 164.6 mA h g(-1) at 1000 mA g(-1) after 3000 cycles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据