4.6 Article

Relation between scattering matrix topological invariants and conductance in Floquet Majorana systems

期刊

PHYSICAL REVIEW B
卷 104, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.104.155422

关键词

-

资金

  1. Israel Science foundation [8114881]

向作者/读者索取更多资源

The study analyzes the conductance of a one-dimensional topological superconductor periodically driven with different configurations of coupling to external leads, finding that the offset time of the zero-mode weight plays an important role in the discrepancy of conductance.
We analyze the conductance of a one-dimensional topological superconductor periodically driven to host Floquet Majorana zero modes for different configurations of coupling to external leads. We compare the conductance of constantly coupled leads, as in standard transport experiments, with the stroboscopic conductance of pulsed coupling to leads used to identify a scattering matrix topological index for periodically driven systems. We find that the sum of the DC conductance at voltages corresponding to integer multiples of the driving frequency is quantitatively close to the stroboscopic conductance at all voltage biases. This is consistent with previous work which indicated that the summed conductance at zero/pi resonances is quantized. We quantify the difference between the two in terms of the widths of their respective resonances and analyze that difference for two different stroboscopic driving protocols of the Kitaev chain. While the quantitative differences are protocol dependent, we find that generically the discrepancy is larger when the zero-mode weight at the end of the chain depends strongly on the offset time between the driving cycle and the pulsed coupling period.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据