4.6 Article

Entanglement-Induced Barren Plateaus

期刊

PRX QUANTUM
卷 2, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PRXQuantum.2.040316

关键词

-

资金

  1. Australian Research Council (ARC) Centre of Excellence for Quantum Computation and Communication Technology (CQC2T) [CE170100012]
  2. Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory
  3. U.S. Department of Energy [PNNL-SA-157287]
  4. U.S. Department of Energy, Office of Science, National Quantum Information Science Research Centers, Co-Design Center for Quantum Advantage [DE-SC0012704]
  5. Google Research Award

向作者/读者索取更多资源

The article discusses how excess entanglement between visible and hidden units in quantum neural networks can hinder learning. Through arguments from quantum thermodynamics, it is shown that the volume law in entanglement entropy is typical and can lead to barren plateaus in the optimization landscape due to entanglement. This could cause both gradient-descent and gradient-free methods to fail.
We argue that an excess in entanglement between the visible and hidden units in a quantum neural network can hinder learning. In particular, we show that quantum neural networks that satisfy a volume law in the entanglement entropy will give rise to models that are not suitable for learning with high probability. Using arguments from quantum thermodynamics, we then show that this volume law is typical and that there exists a barren plateau in the optimization landscape due to entanglement. More precisely, we show that for any bounded objective function on the visible layers, the Lipshitz constants of the expectation value of that objective function will scale inversely with the dimension of the hidden subsystem with high probability. We show how this can cause both gradient-descent and gradient-free methods to fail. We note that similar problems can happen with quantum Boltzmann machines, although stronger assumptions on the coupling between the hidden and/or visible subspaces are necessary. We highlight how pretraining such generative models may provide a way to navigate these barren plateaus.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据