4.4 Review

Feature selection from magnetic resonance imaging data in ALS: a systematic review

期刊

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/20406223211051002

关键词

amyotrophic lateral sclerosis; machine learning; magnetic resonance imaging; motor neuron disease; neurodegeneration; neuroimaging; systematic review

资金

  1. Ulm University Center for Translational Imaging MoMAN

向作者/读者索取更多资源

The systematic review collected MRI biomarkers for ALS, highlighting similarities with accepted neuropathological patterns. This suggests that ML-based neuroimaging classifiers for ALS could benefit from integrating multiple MRI modalities through sound feature selection.
Background: With the advances in neuroimaging in amyotrophic lateral sclerosis (ALS), it has been speculated that multiparametric magnetic resonance imaging (MRI) is capable to contribute to early diagnosis. Machine learning (ML) can be regarded as the missing piece that allows for the useful integration of multiparametric MRI data into a diagnostic classifier. The major challenges in developing ML classifiers for ALS are limited data quantity and a suboptimal sample to feature ratio which can be addressed by sound feature selection. Methods: We conducted a systematic review to collect MRI biomarkers that could be used as features by searching the online database PubMed for entries in the recent 4 years that contained cross-sectional neuroimaging data of subjects with ALS and an adequate control group. In addition to the qualitative synthesis, a semi-quantitative analysis was conducted for each MRI modality that indicated which brain regions were most commonly reported. Results: Our search resulted in 151 studies with a total of 221 datasets. In summary, our findings highly resembled generally accepted neuropathological patterns of ALS, with degeneration of the motor cortex and the corticospinal tract, but also in frontal, temporal, and subcortical structures, consistent with the neuropathological four-stage model of the propagation of pTDP-43 in ALS. Conclusions: These insights are discussed with respect to their potential for MRI feature selection for future ML-based neuroimaging classifiers in ALS. The integration of multiparametric MRI including DTI, volumetric, and texture data using ML may be the best approach to generate a diagnostic neuroimaging tool for ALS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据