4.0 Article

Quantum Mechanics-Based Signal and Image Representation: Application to Denoising

期刊

IEEE OPEN JOURNAL OF SIGNAL PROCESSING
卷 2, 期 -, 页码 190-206

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/OJSP.2021.3067507

关键词

Quantum mechanics; Noise reduction; Oscillators; Transforms; Signal processing; Wave functions; Dictionaries; Adaptive signal and image representation; adaptive transformation; denoising; quantum mechanics

资金

  1. CNRS

向作者/读者索取更多资源

The study investigates a new approach for constructing signal or image-dependent bases inspired by quantum mechanics tools, considering them as potentials in the discretized Schroedinger equation. Experimental results demonstrate the potential of this decomposition method for denoising under Gaussian, Poisson, and speckle noise compared to other state of the art algorithms.
Decomposition of digital signals and images into other basis or dictionaries than time or space domains is a very common approach in signal and image processing and analysis. Such a decomposition is commonly obtained using fixed transforms (e.g., Fourier or wavelet) or dictionaries learned from example databases or from the signal or image itself. In this work, we investigate in detail a new approach of constructing such a signal or image-dependent bases inspired by quantum mechanics tools, i.e., by considering the signal or image as a potential in the discretized Schroedinger equation. To illustrate the potential of the proposed decomposition, denoising results are reported in the case of Gaussian, Poisson, and speckle noise and compared to the state of the art algorithms based on wavelet shrinkage, total variation regularization or patch-wise sparse coding in learned dictionaries, non-local means image denoising, and graph signal processing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据