4.2 Article

Co-structure analysis and genetic associations reveal insights into pinworms (Trypanoxyuris) and primates (Alouatta palliata) microevolutionary dynamics

期刊

BMC ECOLOGY AND EVOLUTION
卷 21, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12862-021-01924-4

关键词

Coevolution; Ecological interactions; Gene flow; Host-parasite associations; Host-specificity; Parasitism

资金

  1. Programa de Apoyo a Proyectos de Investigacion e Innovacion Tecnologica (PAPIIT-UNAM) [IN202819]
  2. DGAPA
  3. UNAM

向作者/读者索取更多资源

The study reveals a genetic correlation between two species of pinworms and howler monkeys, with higher similarity in genetic structure, differentiation, and diversity between howler monkeys and T. multilabiatus compared to T. minutus. The results suggest potential local adaptation in pinworms and support the idea of correlated evolution between pinworms and their primate hosts.
Background In parasitism arm race processes and red queen dynamics between host and parasites reciprocally mold many aspects of their genetics and evolution. We performed a parallel assessment of population genetics and demography of two species of pinworms with different degrees of host specificity (Trypanoxyuris multilabiatus, species-specific; and T. minutus, genus-specific) and their host, the mantled howler monkey (Alouatta palliata), based on mitochondrial DNA sequences and microsatellite loci (these only for the host). Given that pinworms and primates have a close co-evolutionary history, covariation in several genetic aspects of their populations is expected. Results Mitochondrial DNA revealed two genetic clusters (West and East) in both pinworm species and howler monkeys, although population structure and genetic differentiation were stronger in the host, while genetic diversity was higher in pinworms than howler populations. Co-divergence tests showed no congruence between host and parasite phylogenies; nonetheless, a significant correlation was found between both pinworms and A. palliata genetic pairwise distances suggesting that the parasites' gene flow is mediated by the host dispersal. Moreover, the parasite most infective and the host most susceptible haplotypes were also the most frequent, whereas the less divergent haplotypes tended to be either more infective (for pinworms) or more susceptible (for howlers). Finally, a positive correlation was found between pairwise p-distance of host haplotypes and that of their associated pinworm haplotypes. Conclusion The genetic configuration of pinworm populations appears to be molded by their own demography and life history traits in conjunction with the biology and evolutionary history of their hosts, including host genetic variation, social interactions, dispersal and biogeography. Similarity in patterns of genetic structure, differentiation and diversity is higher between howler monkeys and T. multilabiatus in comparison with T. minutus, highlighting the role of host-specificity in coevolving processes. Trypanoxyuris minutus exhibits genetic specificity towards the most frequent host haplotype as well as geographic specificity. Results suggest signals of potential local adaptation in pinworms and further support the notion of correlated evolution between pinworms and their primate hosts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据