4.6 Article

Two-dimensional FeTe2 and predicted Janus FeXS (X: Te and Se) monolayers with intrinsic half-metallic character: tunable electronic and magnetic properties via strain and electric field

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 23, 期 42, 页码 24336-24343

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1cp03078g

关键词

-

资金

  1. National Research Foundation of Korea (NRF) - Korea government (MSIT) [NRF-2015M2B2A4033123]

向作者/读者索取更多资源

The study explores the lattice, dynamic stability, electronic and magnetic properties of FeTeS and FeSeS Janus monolayers using density functional theory calculations, validating their potential as candidate materials for spin filter applications.
Driven by the fabrication of bulk and monolayer FeTe2 (ACS Nano, 2020, 14, 11473-11481), we explore the lattice, dynamic stability, electronic and magnetic properties of FeTeS and FeSeS Janus monolayers using density functional theory calculations. The obtained results validate the dynamic and thermal stability of the FeTeS and FeSeS Janus monolayers examined. The electronic structure shows that the FeTe2 bulk yields a total magnetization higher than the FeTe2 monolayer. FeTeS and FeSeS are categorized as ferromagnetic metals due to their bands crossing the Fermi level. So, they can be a good candidate material for spin filter applications. The biaxial compressive strain on the FeTe2 monolayer tunes the bandgap of the spin-down channel in the half-metal phase. By contrast, for FeTeS, the biaxial strain transforms the ferromagnetic metal into a half-metal. The electric field applied to the FeSeS monolayer in a parallel direction transforms the half-metal to a ferromagnetic metal by closing the gap in the spin-down channel.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据