4.7 Article

Valsartan alleviates the blood-brain barrier dysfunction in db/db diabetic mice

期刊

BIOENGINEERED
卷 12, 期 1, 页码 9070-9080

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/21655979.2021.1981799

关键词

Valsartan; blood-brain barrier (BBB); db; db mice; human brain microvascular endothelial cells (HBMVECs); cAMP-responsive element-binding protein (CREB)

资金

  1. 'Gannan Medical University

向作者/读者索取更多资源

Valsartan exhibits neuroprotective effects in diabetic mice by ameliorating BBB dysfunction, which requires cellular CREB signaling in brain endothelial cells.
Type 2 diabetes (T2D)-related neurological complication is the risk factor for neurodegenerative disorders. The pathological changes from T2D-caused blood-brain barrier (BBB) dysfunction plays a critical role in developing neurodegeneration. The hyper-activation of the Angiotensin II type 1 receptor (AT1R) in the brain is associated with neurovascular impairment. The AT1R antagonist Valsartan is commonly prescribed to control high blood pressure, heart failure, and diabetic kidney diseases. In this study, we investigated the beneficial effects of Valsartan in db/db diabetic mice and isolated brain endothelial cells. We showed that 2 weeks of Valsartan administration (30 mg/Kg body weight) mitigated the increased permeability of the brain-blood barrier and the reduction of gap junction proteins VE-Cadherin and Claudin 2. In human brain microvascular cells (HBMVECs), we found that Valsartan treatment ameliorated high glucose-induced hyperpermeability by measuring Dextran uptake and transendothelial electrical resistance (TEER). Furthermore, Valsartan treatment recovered high glucose-repressed endothelial VE-Cadherin and Claudin 2 expression. Moreover, Valsartan significantly suppressed the expressions of pro-inflammatory cytokines such as macrophage chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) against high glucose. Mechanistically, Valsartan ameliorated high glucose-repressed endothelial cAMP-responsive element-binding protein (CREB) signaling activation. The blockage of CREB activation by PKA inhibitor H89 abolished the action of Valsartan, suggesting its dependence on CREB signaling. In conclusion, Valsartan shows a neuroprotective effect in diabetic mice by ameliorating BBB dysfunction. These effects of Valsartan require cellular CREB signaling in brain endothelial cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据