3.8 Article

Root-associated fungal community reflects host spatial co-occurrence patterns in a subtropical forest

期刊

ISME COMMUNICATIONS
卷 1, 期 1, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/s43705-021-00072-6

关键词

-

资金

  1. PSU Faculty Development Grant
  2. NSF-OCE [1851412, 1851537, 1737364]

向作者/读者索取更多资源

Research indicates that the root-associated fungal communities play a significant role in the spatial coexistence of host plants, and the differentiation in these fungal associations among plant species may affect their patterns of coexistence.
Plant roots harbor and interact with diverse fungal species. By changing these belowground fungal communities, focal plants can affect the performance of surrounding individuals and the outcome of coexistence. Although highly host related, the roles of these root-associated fungal communities per se in host plant spatial co-occurrence is largely unknown. Here, we evaluated the host dependency of root-associated communities for 39-plant species spatially mapped throughout a 50-ha subtropical forest plot with relevant environmental properties. In addition, we explored whether the differentiation in root fungal associations among plant species can reflect their observed co-occurrence patterns. We demonstrated a strong host-dependency by discriminating the differentiation of root-associated fungal communities regardless of background soil heterogeneity. Furthermore, Random Forest modeling indicated that these nonrandom root fungal associations significantly increased our ability to explain spatial co-occurrence patterns, and to a greater degree than the relative abundance, phylogenetic relatedness, and functional traits of the host plants. Our results further suggested that plants harbor more abundant shared, generalist pathogens are likely segregated, while hosting more abundant unique, specialist ectomycorrhizal fungi might be an important strategy for promoting spatial aggregation, particularly between early established trees and the heterospecific adults. Together, we provide a conceptual and testable approach to integrate this host-dependent root fungal fingerprinting into the plant diversity patterns. We highlight that this approach is complementary to the classic cultivation-based scheme and can deepen our understanding of the community-level effect from overall fungi and its contribution to the pairwise plant dynamics in local species-rich communities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据