4.6 Article

Iterative quantum-assisted eigensolver

期刊

PHYSICAL REVIEW A
卷 104, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.104.L050401

关键词

-

资金

  1. National Research Foundation
  2. Ministry of Education, Singapore

向作者/读者索取更多资源

The algorithm presented is a hybrid quantum-classical one that efficiently approximates the ground state of a Hamiltonian using current quantum computers. It constructs the ansatz systematically with any given initial state and unitaries describing the Hamiltonian, without needing complicated measurements. The algorithm has been demonstrated to work for problems with thousands of qubits and avoids the barren plateau problem.
The task of estimating the ground state of Hamiltonians is an important problem in physics with numerous applications ranging from solid-state physics to combinatorial optimization. We provide a hybrid quantum-classical algorithm for approximating the ground state of a Hamiltonian that builds on the powerful Krylov subspace method in a way that is suitable for current quantum computers. Our algorithm systematically constructs the ansatz by using any given choice of the initial state and the unitaries describing the Hamiltonian. The only task of the quantum computer is to measure overlaps and no feedback loops are required. The measurements can be performed efficiently on current quantum hardware without requiring any complicated measurements such as the Hadamard test. Finally, a classical computer solves a well-characterized quadratically constrained optimization program. Our algorithm can reuse previous measurements to calculate the ground state of a wide range of Hamiltonians without requiring additional quantum resources. Further, we demonstrate our algorithm for solving a class of problems with thousands of qubits. The algorithm works for almost every random choice of the initial state and circumvents the barren plateau problem.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据