4.8 Article

High-areal-capacity conversion type iron-based hybrid redox flow batteries

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 14, 期 12, 页码 6329-6337

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1ee02258j

关键词

-

资金

  1. Research Grant Council (RGC) of the Hong Kong Special Administrative Region, China [T23-601/17-R]

向作者/读者索取更多资源

The use of high-loading solid conversion electrodes instead of metal deposition electrodes in hybrid RFBs has achieved high cycling stability at high areal capacities/current densities, while eliminating dendrite issues and metal areal capacity limitations. This approach offers a new direction for developing high-energy, low-cost, and long-lasting hybrid RFBs for large-scale grid energy storage applications.
Hybrid redox flow batteries (RFBs) offer a much higher energy density compared to all-liquid RFBs. However, the negative electrodes of hybrid RFBs normally utilize metal deposition reactions (e.g., zinc metal), which suffer from severe dendrite growth and poor long-term stability, especially at high areal capacities and high current densities. Herein, we propose and demonstrate the use of high-loading solid conversion electrodes to replace metal deposition electrodes to achieve high cycling stability at high areal capacities/current densities in hybrid RFBs. Using a Fe3O4/Fe(OH)(2) conversion negative electrode as an example coupled with a Fe(CN)(6)(3-)/Fe(CN)(6)(4-) posolyte, we demonstrated conversion type all-iron hybrid RFBs with an unprecedentedly high cycling areal capacity of 126.6 mA h cm(-2) at 50 mA cm(-2) for 200 cycles (1000 hours) and 215 mA h cm(-2) at 60 mA cm(-2) for 100 cycles (700 hours) without capacity decay. The solid conversion electrode eliminates dendrite issues and the limitations of metal areal capacity, and demonstrates superior areal capacity, current density, and cycling stability compared to conventional zinc metal negative electrodes. This approach offers a new direction for developing high-energy, low-cost, and long-lasting hybrid RFBs for large-scale grid energy storage applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据