4.5 Article

Effect of variable domain charge on in vitro and in vivo disposition of monoclonal antibodies

期刊

MABS
卷 13, 期 1, 页码 -

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/19420862.2021.1993769

关键词

Antibody pharmacokinetics; charge modification; tissue distribution

资金

  1. National Institute of General Medical Sciences [GM114179]
  2. Center of Protein Therapeutics at the University at Buffalo
  3. National Institute of Allergy and Infectious Diseases grant [AI138195]
  4. National Cancer Institute [R01CA246785, R01CA256928]

向作者/读者索取更多资源

Research has shown the significant impact of molecular charge on antibody PK, with engineered complementarity-determining regions (CDRs) of trastuzumab leading to variants with increased positive charge accumulation in tissues. Whole-body PK experiments revealed a bell-shaped relationship between systemic exposure and Fv charge, and positive charge variants exhibited superior accumulation in well-perfused organs.
A growing body of evidence supports the important role of molecular charge on antibody pharmacokinetics (PK), yet a quantitative description of the effect of charge on systemic and tissue disposition of antibodies is still lacking. Consequently, we have systematically engineered complementarity-determining regions (CDRs) of trastuzumab to create a series of variants with an isoelectric point (pI) range of 6.3-8.9 and a variable region (Fv) charge range of -8.9 to +10.9 (at pH 5.5), and have investigated in vitro and in vivo disposition of these molecules. These monoclonal antibodies (mAbs) exhibited incrementally enhanced binding to cell surfaces and cellular uptake with increased positive charge in antigen-negative cells. After single intravenous dosing in mice, a bell-shaped relationship between systemic exposure and Fv charge was observed, with both extended negative and positive charge patches leading to more rapid nonspecific clearance. Whole-body PK experiments revealed that, although overall exposures of most variants in the tissues were very similar, positive charge of mAbs led to significantly enhanced tissue:plasma concentration ratios for most tissues. In well-perfused organs such as liver, spleen, and kidney, the positive charge variants show superior accumulation. In tissues with continuous capillaries such as fat, muscle, skin, and bone, plasma concentrations governed tissue exposures. The in vitro and in vivo disposition data presented here facilitate better understanding of the impact of charge modifications on antibody PK, and suggest that alteration in the charge may help to improve tissue:plasma concentration ratios for mAbs in certain tissues. The data presented here also paves the way for the development of physiologically based pharmacokinetic models of mAbs that incorporate charge variations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据