4.1 Article

Assessment of COVID-19 effects on satellite-observed aerosol loading over China with machine learning

出版社

STOCKHOLM UNIV PRESS
DOI: 10.1080/16000889.2021.1971925

关键词

Atmospheric aerosols; COVID-19; satellite remote sensing; machine learning

资金

  1. German States
  2. European Commission [821205]
  3. Karlsruhe Institute of Technology (KIT)

向作者/读者索取更多资源

This study used a machine learning model to estimate aerosol optical depth (AOD) during the lockdown in China, finding no clear decrease in AOD during this period. The comparison between model-expected and observed AOD indicated that meteorological influences actually increased AOD in some regions, highlighting the complexity of aerosol variability and the challenges of attribution.
Aerosols are a critical component of the climate system and a risk to human health. Here, the lockdown response to the coronavirus outbreak is used to analyse effects of dramatic reduction in anthropogenic aerosol sources on satellite-retrieved aerosol optical depth (AOD). A machine learning model is applied to estimate daily AOD during the initial lockdown in China in early 2020. The model uses information on aerosol climatology, geography and meteorological conditions, and explains 69% of the day-to-day AOD variability. A comparison of model-expected and observed AOD shows that no clear, systematic decrease in AOD is apparent during the lockdown in China. During March 2020, regional AOD is observed to be significantly lower than expected by the machine learning model in some coastal regions of the North China Plains and extending to the Korean peninsula. While this may possibly indicate a small lockdown effect on regional AOD, and potentially pointing trans-boundary effects of the lockdown measures, due to uncertainties associated with the method and the limited sample sizes, this AOD decrease cannot be unequivocally attributed to reduced anthropogenic emissions. Climatologically expected AOD is compared to a weather-adjusted expectation of AOD, indicating that meteorological influences have acted to significantly increase AOD during this time, in agreement with recent literature. The findings highlight the complexity of aerosol variability and the challenges of observation-based attribution of columnar aerosol changes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据