4.6 Article

Antibiotic resistance patterns of Escherichia coli isolates from the clinic through the wastewater pathway

出版社

ELSEVIER GMBH
DOI: 10.1016/j.ijheh.2021.113863

关键词

CTX-M; ESBL; Phylogroup; Uropathogenic; Wastewater; SXT

资金

  1. Department of Biomedical Sciences at the University of Wisconsin - Milwaukee, WI, USA
  2. Marquette University Explorer Challenge Grant, Milwaukee, WI, USA

向作者/读者索取更多资源

This study compared antimicrobial resistance patterns among UPEC isolates, hospital wastewater, and urban wastewater treatment facilities, finding that multi-drug resistance was more prevalent in hospital wastewater and chlorine-disinfected wastewater showed significantly increased resistance in E. coli.
Antimicrobial resistance (AMR) remains one of the leading global health threats. This study compared antimicrobial resistance patterns among E. coli isolates from clinical uropathogenic Escherichia coli (UPEC) to hospital wastewater populations and throughout an urban wastewater treatment facility - influent, pre- and postchlorinated effluents. Antibiotic susceptibility of 201 isolates were analyzed against eleven different antibiotics, and the presence of twelve antibiotic resistant genes and type 1 integrase were identified. AMR exhibited the following pattern: UPEC (46.8%) > hospital wastewater (37.8%) > urban post-chlorinated effluent (27.6%) > pre-chlorinated effluent (21.4%) > urban influent wastewater (13.3%). However, multi-drug resistance against three or more antimicrobial classes was more prevalent among hospital wastewater populations (29.7%) compared to other sources. E. coli from wastewaters disinfected with chlorine were significantly correlated with increased trimethoprim-sulfamethoxazole resistance in E. coli compared to raw and treated wastewater populations. blaCTX-M-1 group was the most common extended spectrum beta-lactamase in E. coli from hospital wastewater (90%), although UPEC strains also encoded blaCTX-M-1 group (50%) and blaTEM (100%) genes. Among tetracycline-resistant populations, tetA and tetB were the only resistance genes identified throughout wastewater populations that were associated with increased phenotypic resistance. Further characterization of the E. coli populations identified phylogroup B2 predominating among clinical UPEC populations and correlated with the highest AMR, whereas the elevated rate of multi-drug resistance among hospital wastewater was mostly phylogroup A. Together, our findings highlight hospital wastewater as a rich source of AMR and multi-drug resistant bacterial populations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据