4.8 Review

Vacancy defect engineering of BiVO4 photoanodes for photoelectrochemical water splitting

期刊

NANOSCALE
卷 13, 期 43, 页码 17989-18009

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1nr05691c

关键词

-

资金

  1. National Natural Science Foundation of China [52002328]
  2. Fundamental Research Funds for the Central Universities
  3. Joint Research Funds of Department of Science & Technology of Shaanxi Province
  4. Northwestern Polytechnical University [2020GXLH-Z-018]
  5. Australian Research Council
  6. Laureate Fellowship

向作者/读者索取更多资源

Bismuth vanadate (BiVO4) is a promising photoanode material with advantages such as visible light absorption, good chemical stability, nontoxic feature, and low cost. However, its performance is limited by short hole diffusion length and poor electron transport properties, which have been significantly improved by vacancy defect engineering in recent years.
Photoelectrochemical (PEC) water splitting has been regarded as a promising technology for sustainable hydrogen production. The development of efficient photoelectrode materials is the key to improve the solar-to-hydrogen (STH) conversion efficiency towards practical application. Bismuth vanadate (BiVO4) is one of the most promising photoanode materials with the advantages of visible light absorption, good chemical stability, nontoxic feature, and low cost. However, the PEC performance of BiVO4 photoanodes is limited by the relatively short hole diffusion length and poor electron transport properties. The recent rapid development of vacancy defect engineering has significantly improved the PEC performance of BiVO4. In this review article, the fundamental properties of BiVO4 are presented, followed by an overview of the methods for creating different kinds of vacancy defects in BiVO4 photoanodes. Then, the roles of vacancy defects in tuning the electronic structure, promoting charge separation, and increasing surface photoreaction kinetics of BiVO4 photoanodes are critically discussed. Finally, the major challenges and some encouraging perspectives for future research on vacancy defect engineering of BiVO4 photoanodes are presented, providing guidelines for the design of efficient BiVO4 photoanodes for solar fuel production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据