4.2 Article

Hubbard model on triangular N-leg cylinders: Chiral and nonchiral spin liquids

期刊

PHYSICAL REVIEW RESEARCH
卷 3, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.3.043082

关键词

-

向作者/读者索取更多资源

Recent intensive density-matrix renormalization group (DMRG) simulations have suggested the existence of a gapped chiral spin liquid near the metal-insulator transition of the Hubbard model on the triangular lattice. Using the variational Monte Carlo technique, a chiral spin liquid with magnetic quasi-long-range order was found for N = 4. However, for N = 5 and 6, the chiral state was not the state with the lowest variational energy, with a nematic spin liquid found for N = 5 and results similar to two-dimensional clusters for N = 6.
The existence of a gapped chiral spin liquid has been recently suggested in the vicinity of the metal-insulator transition of the Hubbard model on the triangular lattice, by intensive density-matrix renormalization group (DMRG) simulations [A. Szasz, J. Motruk, M. P. Zaletel, and J. E. Moore, Phys. Rev. X 021042 (2020)]. Here, we report the results obtained within the variational Monte Carlo technique based upon Jastrow-Slater wave functions, implemented with backflow correlations. As in DMRG calculations, we consider N-leg cylinders. For N = 4 and in the presence of a next-nearest-neighbor hopping, a chiral spin liquid emerges between the metal and the insulator with magnetic quasi-long-range order. Within our approach, the chiral state is gapped and breaks the reflection symmetry. By contrast, for both N = 5 and 6, the chiral spin liquid is not the state with the lowest variational energy: in the former case, a nematic spin liquid is found in the entire insulating regime, while for the less frustrated case with N = 6 the results are very similar to that obtained on two-dimensional clusters [L. F. Tocchio, A. Montorsi, and F. Becca, Phys. Rev. B 102, 115150 (2020)], with an antiferromagnetic phase close to the metal-insulator transition and a nematic spin liquid in the strong-coupling regime.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据