4.6 Article

False vacuum decay in quantum spin chains

期刊

PHYSICAL REVIEW B
卷 104, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.104.L201106

关键词

-

资金

  1. ERC [758329, 771536]
  2. NEMO
  3. National Research, Development and Innovation Office (NKFIH) through the OTKA [K 138606]
  4. grant TKP2020 IES Grant [BME-IE-NAT]
  5. UNKP-21-5 New National Excellence Program
  6. Quantum Information National Laboratory of Hungary of the Ministry for Innovation and Technology
  7. HAS

向作者/读者索取更多资源

False vacuum decay, an important topic in physics, can be studied using current optical experiments to simulate particle confinement and understand the rapid evolution of false vacuum. Research shows that the decay rate of false vacuum decreases exponentially as the longitudinal field changes.
The false vacuum decay has been a central theme in physics for half a century with applications to cosmology and to the theory of fundamental interactions. This fascinating phenomenon is even more intriguing when combined with the confinement of elementary particles. Due to the astronomical timescales involved, the research has so far focused on theoretical aspects of this decay. The purpose of this Letter is to show that the false vacuum decay is accessible to current optical experiments as quantum analog simulators of spin chains with confinement of the elementary excitations, which mimic the high energy phenomenology but in one spatial dimension. We study the nonequilibrium dynamics of the false vacuum in a quantum Ising chain and in an XXZ ladder. The false vacuum is the metastable state that arises in the ferromagnetic phase of the model when the symmetry is explicitly broken by a longitudinal field. This state decays through the formation of bubbles of true vacuum. Using infinite volume time evolving block decimation (iTEBD) simulations, we are able to study the real-time evolution in the thermodynamic limit and measure the decay rate of local observables. We find that the numerical results agree with the theoretical prediction that the decay rate is exponentially small in the inverse of the longitudinal field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据