4.6 Article

Non-destructive determination of functionalized polyelectrolyte placement in layer-by-layer films by IR ellipsometry

期刊

SOFT MATTER
卷 17, 期 46, 页码 10527-10535

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1sm01246k

关键词

-

资金

  1. National Science Foundation [CMMI-1462284, DMR-1425187]

向作者/读者索取更多资源

Layer-by-layer assembly allows controlled coatings with the ability to manipulate composition through thickness. Non-destructive quantification of depth dependence of allyl content in these coatings is demonstrated using IR spectroscopic ellipsometry, revealing dynamic dissolution-deposition processes and mechanisms for exponential growth in LbL assemblies.
Layer-by-layer (LbL) assembly facilitates controlled coatings on a variety of surfaces with the ability to manipulate the composition through the thickness by selection of the complementary pairs. However, the characterization of these composition profiles tends to be destructive and requires significant compositional differences that can limit their utility. Here, we demonstrate the ability to non-destructively quantify the depth dependence of the allyl content associated with the selective incorporation of poly(sodium acrylate-co-allylacrylamide) (84 : 16 mol : mol) (allyl-PAA) in LbL films based on the assembly of poly(diallyldimethylammonium chloride) (PDAC)/poly(acrylic acid) (PAA) and PDAC/allyl-PAA. Although the atomic composition of the film is not dramatically influenced by the change between PAA and allyl-PAA, the absorption in the IR near 1645 cm(-1) by the allyl group provides sufficient optical contrast to distinguish the LbL components with spectroscopic ellipsometry. The use of IR spectroscopic ellipsometry can determine the thickness of layers that contain allyl-PAA and also gradients that develop due to re-arrangements during the LbL process. With multiple films fabricated simultaneously, the location of the gradient between the 1st and 2nd series of multilayers (e.g., first PDAC/PAA bilayers and then PDAC/allyl-PAA bilayers) can be readily assessed. The results from a variety of different multilayer architectures indicate that the gradient is located within the thickness expected for the 1st deposited bilayer stack (PDAC/PAA or PDAC/allyl-PAA). These results are indicative of a dynamic dissolution-deposition process (in- and out- diffusion) during the fabrication of these LbL films. These results provide additional evidence into the mechanisms for exponential growth in LbL assemblies. The ability to quantify a gradient with the low contrast system examined indicates that spectroscopic IR ellipsometry should be able to non-destructively determine compositional gradients for most polymer films where such gradients exist.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据