4.7 Article

Fusobacterium nucleatum drives a pro-inflammatory intestinal microenvironment through metabolite receptor-dependent modulation of IL-17 expression

期刊

GUT MICROBES
卷 13, 期 1, 页码 -

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/19490976.2021.1987780

关键词

Microbiome; colorectal cancer; Th17 cells; interleukin 17; gnotobiotics; Fusobacterium nucleatum; altered Schaedler's flora

资金

  1. Cancer Research UK [C10674/A27140]
  2. Damon Runyon Cancer Research Foundation [DRG-2205-14]
  3. G. Harold and Leila Y. Mathers Foundation [GHLYMF]
  4. National Cancer Institute [R01CA154426, T32CA207021]

向作者/读者索取更多资源

Fusobacterium nucleatum influences intestinal immunity by shaping Th17 responses in an FFAR2-dependent manner. Further studies are necessary to clarify the precise role of FFAR2.
The colorectal cancer (CRC)-associated microbiota creates a pro-tumorigenic intestinal milieu and shapes immune responses within the tumor microenvironment. However, how oncomicrobes - like Fusobacterium nucleatum, found in the oral cavity and associated with CRC tissues- affect these distinct aspects of tumorigenesis is difficult to parse. Herein, we found that neonatal inoculation of Apc(Min/+) mice with F. nucleatum strain Fn7-1 circumvents technical barriers preventing its intestinal colonization, drives colonic Il17a expression prior to tumor formation, and potentiates intestinal tumorigenesis. Using gnotobiotic mice colonized with a minimal complexity microbiota (the altered Schaedler's flora), we observed that intestinal Fn7-1 colonization increases colonic Th17 cell frequency and their IL-17A and IL-17F expression, along with a concurrent increase in colonic lamina propria Il23p19 expression. As Fn7-1 stably colonizes the intestinal tract in our models, we posited that microbial metabolites, specifically short-chain fatty acids (SCFA) that F. nucleatum abundantly produces in culture and, as we demonstrate, in the intestinal tract, might mediate part of its immunomodulatory effects in vivo. Supporting this hypothesis, we found that Fn7-1 did not alter ROR gamma t(+) CD4(+)T cell frequency in the absence of the SCFA receptor FFAR2. Taken together, our work suggests that F. nucleatum influences intestinal immunity by shaping Th17 responses in an FFAR2-dependent manner, although further studies are necessary to clarify the precise and multifaceted roles of FFAR2. The potential to increase intestinal Th17 responses is shared by another oncomicrobe, enterotoxigenic Bacteroides fragilis, highlighting a conserved pathway that could potentially be targeted to slow oncomicrobe-mediated CRC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据