4.8 Article

Unexpected high selectivity for acetate formation from CO2 reduction with copper based 2D hybrid catalysts at ultralow potentials

期刊

CHEMICAL SCIENCE
卷 12, 期 46, 页码 15382-15388

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1sc05441d

关键词

-

资金

  1. National Natural Science Foundation of China [21703003, 21972006]
  2. Shenzhen Peacock Plan [KQTD2016053015544057]
  3. Shenzhen Science and Technology Innovation Commission [JCYJ20180302153417057, JCYJ20190808155413194]
  4. Nanshan Pilot Plan [LHTD20170001]

向作者/读者索取更多资源

The study presents a hybrid catalyst synthesized through electrochemical transformation, which can effectively enhance the activity and selectivity of copper-based catalysts in the CO2 reduction reaction. By anchoring 2D-Cu metallic dots on F-doped CuxO nanoplates, the hybrid catalyst achieved high efficiency in generating CH3COO- at extremely low potentials.
Copper-based catalysts are efficient for CO2 reduction affording commodity chemicals. However, Cu(i) active species are easily reduced to Cu(0) during the CO2RR, leading to a rapid decay of catalytic performance. Herein, we report a hybrid-catalyst that firmly anchors 2D-Cu metallic dots on F-doped CuxO nanoplates (CuxOF), synthesized by electrochemical-transformation under the same conditions as the targeted CO2RR. The as-prepared Cu/CuxOF hybrid showed unusual catalytic activity towards the CO2RR for CH3COO- generation, with a high FE of 27% at extremely low potentials. The combined experimental and theoretical results show that nanoscale hybridization engenders an effective s,p-d coupling in Cu/CuxOF, raising the d-band center of Cu and thus enhancing electroactivity and selectivity for the acetate formation. This work highlights the use of electronic interactions to bias a hybrid catalyst towards a particular pathway, which is critical for tuning the activity and selectivity of copper-based catalysts for the CO2RR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据