4.6 Article

Understanding the strain-dependent structure of Cu nanocrystals in Ag-Cu nanoalloys

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 23, 期 46, 页码 26165-26177

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1cp04145b

关键词

-

向作者/读者索取更多资源

The study investigates the structure of octahedral Ag-Cu nanoalloys using BHMC searches to optimize shape and chemical ordering. The addition of Cu affects the shape and defects of the nanocrystal, with misfit strain playing a key role in determining the structure.
The structure of octahedral Ag-Cu nanoalloys is investigated by means of basin hopping Monte Carlo (BHMC) searches involving the optimization of shape and chemical ordering. Due to the significant size mismatch between Ag and Cu, the misfit strain plays a key role in determining the structure of Ag-Cu nanoalloys. At all the compositions, segregated chemical ordering is observed. However, the shape of the Cu nanocrystal and the associated defects are significantly different. At lower amounts of Cu (as little as 2 atom %), defects close to the surface are observed leading to a highly non-compact shape of the Cu nanocrystal which is non-trivial. The number of Cu-Cu bonds is relatively lower in the non-compact shape which is contrary to the preference of bulk Ag-Cu alloys to maximize the homo-atomic bonds. Due to the non-compact shape, {100} Ag-Cu interfaces are observed which are not expected. As the amount of Cu increases, the Cu nanocrystal undergoes a shape transition from non-compact to a compact octahedron. The associated defect structure is also modified. The structural changes due to the strain effects have been explained by calculating the atomic pressure maps and the bond length distributions. The trends relating to the structure have also been verified at larger sizes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据