4.6 Article

Weak localization of light in hot atomic vapors

期刊

PHYSICAL REVIEW A
卷 104, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.104.053714

关键词

-

资金

  1. European Union
  2. Fond Europeen de Developpement Regional (FEDER)

向作者/读者索取更多资源

Theoretical exploration reveals that partial counterbalance of decoherence due to thermal motion in a hot atomic vapor can be achieved by working at large laser detuning and using small atomic cells with an elongated geometry, making experimental detection of weak localization within reach.
We theoretically explore the possibility to detect weak localization of light in a hot atomic vapor, where one usually expects the fast thermal motion of the atoms to destroy any interference in multiple scattering. To this end, we compute the coherent backscattering peak, assuming high temperature and taking into account the quantum level structure of the atomic scatterers. It is found that the decoherence due to thermal motion can be partially counterbalanced by working at large laser detuning and using small atomic cells with an elongated geometry. Under these conditions, our estimates suggest that weak localization in a hot vapor should be within reach of experimental detection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据