4.6 Article

The mechanism of organic radical oxidation catalysed by gold nanoparticles

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 23, 期 46, 页码 26494-26500

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1cp03875c

关键词

-

向作者/读者索取更多资源

Metal nanoparticles can catalyze reactions involving organic free radicals. This study investigated the catalytic activity of gold nanoparticles in two oxidation reactions, revealing unexpected results due to the presence of oxygen and nanoparticles in the reaction mechanisms.
Metal nanoparticles can catalyze reactions involving organic free radicals. From the first studies focused on the catalytic reduction of water by free radicals until today, the catalytic oxidation of organic radicals has not received attention. In this work, we present the results on the catalytic activity of gold nanoparticles in the oxidation of 2-propanol to acetone and acetanilide hydroxylation during water radiolysis. A detailed reaction mechanism of alpha-hydroxyisopropyl radical oxidation is discussed, explaining the increase in acetone formation by ca. 340% in the presence of gold nanoparticles. In the case of acetanilide hydroxylation in the presence of nanoparticles, a strong effect of oxygen in the reaction mechanism was observed: the increase in the oxygen concentration from 0 to 1.22 mM leads to a 40-fold decrease in hydroxylation product formation. This observation is unexpected since, in the absence of gold nanoparticles, oxygen stimulates hydroxylation reactions. We propose that in the presence of both oxygen and nanoparticles, oxygen attaches first to acetanilide OH-adducts, and then nanoparticles catalyze the oxidation of peroxyl type radicals, which does not lead to the formation of hydroxylation products.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据