4.6 Article

Flexible but robust Ti3C2Tx MXene/bamboo microfibril composite paper for high-performance wearable electronics

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 9, 期 47, 页码 26758-26766

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1ta08017b

关键词

-

资金

  1. National Natural Science Foundation of China [51803016, 11872132, U1837204]
  2. Chongqing University [0241001104454, 0903005203352, 0241001104417]

向作者/读者索取更多资源

This study presents a simple method to prepare a flexible MXene/BF composite paper with excellent mechanical and electrical properties, suitable for high-performance wearable electronics, such as pressure sensors, electric heaters, and supercapacitors.
This work reports a flexible yet robust Ti3C2Tx MXene/bamboo microfibril (BF) composite paper via a simple vacuum filtration process. Due to the excellent compatibility between MXene and BF, the MXene/BF composite paper demonstrates simultaneously an excellent tensile strength of 49.5 MPa, higher than that of both MXene sheet and BF film alone and also among the top values compared with those in the literature, an excellent electrical conductivity as high as 4.8 x 10(3) S m(-1) which is also higher even at a lower MXene content than those reported in the literature, and outstanding electrical stability with no detectable deterioration after 1000 cycles of stretching, bending and compression. As a result, the MXene/BF composite paper shows versatility for making various high-performance wearable electronics. Specifically, the as-prepared flexible pressure sensor by stacking exhibits a high sensitivity of 0.153 kPa(-1) and a linear sensing performance in the pressure range of 0 to 2.5 kPa; the as-fabricated electric heater displays outstanding electrothermal performance, giving a temperature difference of 20 degrees C in air at the lowest input voltage of 2.5 V compared with those of the literature; the produced wearable symmetric all-solid-state supercapacitor achieves large enhancements in volumetric capacitance and gravimetric capacitance compared with the neat MXene supercapacitor and outstanding energy storage stability upon varied deformations. The MXene/BF composite paper with the above virtues is appealing for wide applications in multifunctional wearable electronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据