4.6 Article

Epileptic Seizures Detection in EEG Signals Using Fusion Handcrafted and Deep Learning Features

期刊

SENSORS
卷 21, 期 22, 页码 -

出版社

MDPI
DOI: 10.3390/s21227710

关键词

epileptic seizures; EEG; diagnosis; TQWT; nonlinear features; CNN-RNN

向作者/读者索取更多资源

This study presents a computer-aided diagnosis system for automatically diagnosing epileptic seizures in EEG signals. The proposed method involves preprocessing, feature extraction, and classification, and achieves satisfactory results on the Bonn and Freiburg datasets.
Epilepsy is a brain disorder disease that affects people's quality of life. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. This paper provides a computer-aided diagnosis system (CADS) for the automatic diagnosis of epileptic seizures in EEG signals. The proposed method consists of three steps, including preprocessing, feature extraction, and classification. In order to perform the simulations, the Bonn and Freiburg datasets are used. Firstly, we used a band-pass filter with 0.5-40 Hz cut-off frequency for removal artifacts of the EEG datasets. Tunable-Q Wavelet Transform (TQWT) is used for EEG signal decomposition. In the second step, various linear and nonlinear features are extracted from TQWT sub-bands. In this step, various statistical, frequency, and nonlinear features are extracted from the sub-bands. The nonlinear features used are based on fractal dimensions (FDs) and entropy theories. In the classification step, different approaches based on conventional machine learning (ML) and deep learning (DL) are discussed. In this step, a CNN-RNN-based DL method with the number of layers proposed is applied. The extracted features have been fed to the input of the proposed CNN-RNN model, and satisfactory results have been reported. In the classification step, the K-fold cross-validation with k = 10 is employed to demonstrate the effectiveness of the proposed CNN-RNN classification procedure. The results revealed that the proposed CNN-RNN method for Bonn and Freiburg datasets achieved an accuracy of 99.71% and 99.13%, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据