4.7 Article

Primordial black holes from confinement

期刊

PHYSICAL REVIEW D
卷 104, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.104.123507

关键词

-

资金

  1. Humboldt Foundation under Humboldt Professorship Award
  2. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [EXC-2111-390814868]

向作者/读者索取更多资源

A mechanism for the formation of primordial black holes is proposed, involving the behaviors of heavy quarks during inflation to explain the formation of black holes in a way different from traditional models, while avoiding the difficulties exhibited by other mechanisms. The study demonstrates the phenomenological features of this mechanism and discusses its implications for explaining both dark matter and supermassive black holes in galactic centers.
A mechanism for the formation of primordial black holes is proposed. Here, heavy quarks of a confining gauge theory produced by de Sitter fluctuations are pushed apart by inflation and get confined after horizon reentry. The large amount of energy stored in the color flux tubes connecting the quark pair leads to black-hole formation. These are much lighter and can be of higher spin than those produced by standard collapse of horizon-size inflationary overdensities. Other difficulties exhibited by such mechanisms are also avoided. Phenomenological features of the new mechanism are discussed as well as accounting for both the entirety of the dark matter and the supermassive black holes in the galactic centers. Under proper conditions, the mechanism can be realized in a generic confinement theory, including ordinary QCD. We discuss a possible string-theoretic realization via D-branes. Interestingly, for conservative values of the string scale, the produced gravity waves are within the range of recent NANOGrav data. Simple generalizations of the mechanism allow for the existence of a significant scalar component of gravity waves with distinct observational signatures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据