4.4 Article

Necrostatin-1 Analog DIMO Exerts Cardioprotective Effect against Ischemia Reperfusion Injury by Suppressing Necroptosis via Autophagic Pathway in Rats

期刊

PHARMACOLOGY
卷 106, 期 3-4, 页码 189-201

出版社

KARGER
DOI: 10.1159/000510864

关键词

DIMO; Myocardial infarction; Necroptosis; Autophagy; Cardioprotection

资金

  1. NSFC from the National Natural Science Foundation of China [81703501]
  2. Jiangsu Key Talent Youth Awards in Medicine [QNRC2016219]
  3. Gusu Health Youth Talent Awards [GSWS2019092]
  4. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

向作者/读者索取更多资源

This study showed that DIMO exerts cardioprotection against myocardial I/R injury by reducing RIP1K activation and restoring impaired autophagic flux.
Aim: It has been reported that necrostatin-1 (Nec-1) is a specific necroptosis inhibitor that could attenuate programmed cell death induced by myocardial ischemia/reperfusion (I/R) injury. This study aimed to observe the effect and mechanism of novel Nec-1 analog (Z)-5-(3,5-dimethoxybenzyl)-2-imine-1-methylimidazolin-4-1 (DIMO) on myocardial I/R injury. Methods: Male SD rats underwent I/R injury with or without different doses of DIMO (1, 2, or 4 mg/kg) treatment. Isolated neonatal rat cardiomyocytes were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) treatment with or without DIMO (0.1, 1, 10, or 100 mu M). Myocardial infarction was measured by TTC staining. Cardiomyocyte injury was assessed by lactate dehydrogenase assay (LDH) and flow cytometry. Receptor-interacting protein 1 kinase (RIP1K) and autophagic markers were detected by co-immunoprecipitation and Western blotting analysis. Molecular docking of DIMO into the ATP binding site of RIP1K was performed using GLIDE. Results: DIMO at doses of 1 or 2 mg/kg improved myocardial infarct size. However, the DIMO 4 mg/kg dose was ineffective. DIMO at the dose of 0.1 mu M decreased LDH leakage and the ratio of PI-positive cells followed by OGD/R treatment. I/R or OGD/R increased RIP1K expression and in its interaction with RIP3K, as well as impaired myocardial autophagic flux evidenced by an increase in LC3-II/I ratio, upregulated P62 and Beclin-1, and activated cathepsin B and L. In contrast, DIMO treatment reduced myocardial cell death and reversed the above mentioned changes in RIP1K and autophagic flux caused by I/R and OGD/R. DIMO binds to RIP1K and inhibits RIP1K expression in a homology modeling and ligand docking. Conclusion: DIMO exerts cardioprotection against I/R- or OGD/R-induced injury, and its mechanisms may be associated with the reduction in RIP1K activation and restoration impaired autophagic flux.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据