4.2 Article

Memory in non-monotonic stress response of an athermal disordered solid

期刊

PHYSICAL REVIEW RESEARCH
卷 3, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.3.043153

关键词

-

资金

  1. European Union's Horizon 2020 research and innovation programme under theMarie Sklodowska-Curie Grant [893128]
  2. Marie Curie Actions (MSCA) [893128] Funding Source: Marie Curie Actions (MSCA)

向作者/读者索取更多资源

By applying athermal jammed solid model to two-step and three-step protocols, it is found that stress response can be understood through linear response theory. The observed memory effect phenomenon suggests a linear scaling with age for slow linear responses with power law or logarithmic decay.
Athermal systems across a large range of length scales, ranging from foams and granular bead packings to crumpled metallic sheets, exhibit slow stress relaxation when compressed. Experimentally they show a non-monotonic stress response when decompressed somewhat after an initial compression, i.e., under a two-step, Kovacs-like protocol. It turns out that from this response one can tell for how long the system was in a compressed state, suggesting an interpretation as a memory effect. In this paper we use a model of an athermal jammed solid, specifically a binary mixture of soft harmonic particles, to explore this phenomenon through in silico experiments. Using extensive simulations under conditions analogous to those in experiment, we observe identical phenomenology in the stress response under a two-step protocol. Our model system also recovers the behavior under a more recently studied three-step protocol, which consists of a compression followed by a decompression and then a final compression. We show that the observed response in both two-step and three-step protocols can be understood using linear response theory. In particular, a linear scaling with age for the two-step protocol arises generically for slow linear responses with power law or logarithmic decay and does not in itself point to any underlying aging dynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据