4.2 Article

Stochastic dynamics of single molecules across phase boundaries

期刊

PHYSICAL REVIEW RESEARCH
卷 3, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.3.043150

关键词

-

向作者/读者索取更多资源

This study discusses the stochastic trajectories of single molecules in a phase-separated liquid with coexisting dense and dilute phases. The research shows that molecular trajectories can be described as diffusion with drift in an effective potential. Furthermore, it explores how the physics of phase coexistence affects the statistics of molecular trajectories, particularly in relation to displacements of molecules crossing phase boundaries.
We discuss the stochastic trajectories of single molecules in a phase-separated liquid, when a dense and a dilute phase coexist. Starting from a continuum theory of macroscopic phase separation we derive a stochastic Langevin equation for molecular trajectories that takes into account thermal fluctuations. We find that molecular trajectories can be described as diffusion with drift in an effective potential, which has a steep gradient at phase boundaries. We discuss how the physics of phase coexistence affects the statistics of molecular trajectories and in particular the statistics of displacements of molecules crossing a phase boundary. At thermodynamic equilibrium detailed balance imposes that the distributions of displacements crossing the phase boundary from the dense or from the dilute phase are the same. Our theory can be used to infer key phase separation parameters from the statistics of single-molecule trajectories. For simple Brownian motion, there is no drift in the presence of a concentration gradient. We show that interactions in the fluid give rise to an average drift velocity in concentration gradients. Interestingly, under non-equilibrium conditions, single molecules tend to drift uphill the concentration gradient. Thus, our work bridges between single-molecule dynamics and collective dynamics at macroscopic scales and provides a framework to study single-molecule dynamics in phase-separating systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据