4.2 Article

Observation of a flat band and bandgap in millimeter-scale twisted bilayer graphene

期刊

COMMUNICATIONS MATERIALS
卷 2, 期 1, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/s43246-021-00221-3

关键词

-

资金

  1. JSPS KAKENHI [JP18H01889, JP19H05813, JP21H01019, JP18H01154]
  2. Project of Creation of Life Innovation Materials for Interdisciplinary and International Researcher Development of the Ministry of Education, Culture, Sports, Science and Technology, Japan
  3. ZAIKEN, Waseda University [31001]
  4. JST CREST [JPMJCR19T1]
  5. [17K05495]

向作者/读者索取更多资源

Researchers fabricated twisted bilayer graphene samples with an area exceeding 3 x 5 mm(2) and observed a flat band and large bandgap using angle-resolved photoemission spectroscopy, indicating the presence of superconductivity.
Magic-angle twisted bilayer graphene is interesting for its correlated superconducting and insulating states, but samples are typically micrometer-scale. Here, 3 x 5 mm(2) twisted bilayer graphene samples are fabricated, exhibiting a flat band and large bandgap revealed by angle-resolved photoemission spectroscopy. Magic-angle twisted bilayer graphene, consisting of two graphene layers stacked at a special angle, exhibits superconductivity due to the maximized density of states at the energy of the flat band. Generally, experiments on twisted bilayer graphene have been performed using micrometer-scale samples. Here we report the fabrication of twisted bilayer graphene with an area exceeding 3 x 5 mm(2) by transferring epitaxial graphene onto another epitaxial graphene, and observation of a flat band and large bandgap using angle-resolved photoemission spectroscopy. Our results suggest that the substrate potential induces both the asymmetrical doping in large angle twisted bilayer graphene and the electron doped nature of the flat band in magic-angle twisted bilayer graphene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据