4.6 Article

Observation of topological edge states in the quantum spin Hall insulator Ta2Pd3Te5

期刊

PHYSICAL REVIEW B
卷 104, 期 24, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.104.L241408

关键词

-

向作者/读者索取更多资源

Experimental evidence of a 2DTI in the van der Waals material Ta2Pd3Te5 has been reported, showing that each monolayer is a 2DTI with weak interlayer interactions. Measurements confirm the existence of a band gap at the Fermi level and topological edge states inside the gap, making Ta2Pd3Te5 a promising material for fabricating spintronic devices based on the QSH effect.
Two-dimensional topological insulators (2DTIs), which host the quantum spin Hall (QSH) effect, are one of the key materials in next-generation spintronic devices. To date, experimental evidence of the QSH effect has only been observed in a few materials, and thus, the search for new 2DTIs is at the forefront of physical and materials science. Here, we report experimental evidence of a 2DTI in the van der Waals material Ta2Pd3Te5. First-principles calculations show that each monolayer of Ta2Pd3Te5 is a 2DTI with weak interlayer interactions. Combined transport, angle-resolved photoemission spectroscopy, and scanning tunneling microscopy measurements confirm the existence of a band gap at the Fermi level and topological edge states inside the gap. These results demonstrate that Ta2Pd3Te5 is a promising material for fabricating spintronic devices based on the QSH effect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据