4.8 Article

Mechanistic Study of the Validity of Using Hydroxyl Radical Probes To Characterize Electrochemical Advanced Oxidation Processes

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 51, 期 4, 页码 2355-2365

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.6b05513

关键词

-

资金

  1. National Science Foundation [CBET-1159764, CBET-1453081]
  2. Div Of Chem, Bioeng, Env, & Transp Sys
  3. Directorate For Engineering [1453081] Funding Source: National Science Foundation

向作者/读者索取更多资源

The detection of hydroxyl radicals (OH center dot) is typically accomplished by using reactive probe molecules, but prior studies have not thoroughly investigated the suitability of these probes for use in electrochemical advanced oxidation processes (EAOPs), due to the neglect of alternative reaction mechanisms. In this study, we investigated the suitability of four OH center dot probes (coumarin, p-chlorobenzoic acid, terephthalic acid, and p-benzoquinone) for use in EAOPs. Experimental results indicated that both coumarin and p-chlorobenzoic acid are oxidized via direct electron transfer reactions, while p-benzoquinone and terephthalic acid are not. Coumarin oxidation to form the OH center dot adduct product 7-hydroxycoumarin was found at anodic potentials lower than that necessary for OH center dot formation. Density functional theory (DFT) simulations found a thermodynamically favorable and non-OH center dot mediated pathway for 7-hydroxycoumarin formation, which is activationless at anodic potentials > 2.10 V/SHE. DFT simulations also provided estimates of E degrees values for a series of OH center dot probe compounds, which agreed with voltammetry results. Results from this study indicated that terephthalic acid is the most appropriate OH center dot probe compound for the characterization of electrochemical and catalytic systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据