4.8 Article

Detecting Microbially Induced Calcite Precipitation in a Model Well-Bore Using Downhole Low-Field NMR

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 51, 期 3, 页码 1537-1543

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.6b04833

关键词

-

资金

  1. National Science Foundation Graduate Research Fellowship Program [DGE-1049562]
  2. Department of Energy [DE-FE0024296, DE-FG02-11ER9002]

向作者/读者索取更多资源

Microbially induced calcite precipitation (MICP) has been widely researched recently due to its relevance for subsurface engineering applications including sealing leakage pathways and permeability modification. These applications of MICP are inherently difficult to monitor nondestructively in time and space. Nuclear magnetic resonance (NMR) can characterize the pore size distributions, porosity, and permeability of subsurface formations. This investigation used a low-field NMR well-logging probe to monitor MICP in a sand-filled bioreactor, measuring NMR signal amplitude and T-2 relaxation over an 8 day experimental period. Following inoculation with the ureolytic bacteria, Sporosarcina pasteurii, and pulsed injections of urea and calcium substrate, the NMR measured water content in the reactor decreased to 76% of its initial value. T-2 relaxation distributions bifurcated from a single mode centered about approximately 650 ms into a fast decaying population (T-2 less than 10 ms) and a larger population with T-2 greater than 1000 ms. The combination of changes in pore volume and surface minerology accounts for the changes in the T-2 distributions. Destructive sampling confirmed final porosity was approximately 88% of the original value. These results indicate the low-field NMR well-logging probe is sensitive to the physical and chemical changes caused by MICP in a laboratory bioreactor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据