4.8 Article

Wollastonite Carbonation in Water-Bearing Supercritical CO2: Effects of Particle Size

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 51, 期 21, 页码 13044-13053

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.7b04475

关键词

-

资金

  1. National Science Foundation's CAREER Award [EAR-1057117]
  2. Consortium for Clean Coal Utilization
  3. Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-05CH11231]

向作者/读者索取更多资源

The performance of geologic CO2 sequestration (GCS) can be affected by CO2 mineralization and changes in the permeability of geologic formations resulting from interactions between water-bearing supercritical CO2 (scCO(2)) and silicates in reservoir rocks. However, without an understanding of the size effects, the findings in previous studies using nanometer- or micrometer-size particles cannot be applied to the bulk rock in field sites. In this study, we report the effects of particle sizes on the carbonation of wollastonite (CaSiO3) at 60 degrees C and 100 bar in water-bearing scCO(2). After normalization by the surface area, the thickness of the reacted wollastonite layer on the surfaces was independent of particle sizes. After 20 h, the reaction was not controlled by the kinetics of surface reactions but by the diffusion of water-bearing scCO(2) across the product layer on wollastonite surfaces. Among the products of reaction, amorphous silica, rather than calcite, covered the wollastonite surface and acted as a diffusion barrier to water-bearing scCO(2). The product layer was not highly porous, with a specific surface area 10 times smaller than that of the altered amorphous silica formed at the wollastonite surface in aqueous solution. These findings can help us evaluate the impacts of mineral carbonation in water-bearing scCO(2).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据