4.8 Article

Simplified Modeling of Organic Contaminant Adsorption by Activated Carbon and Biochar in the Presence of Dissolved Organic Matter and Other Competing Adsorbates

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 51, 期 17, 页码 10031-10040

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.7b00758

关键词

-

资金

  1. U.S. EPA-STAR Fellowship [FP 91767301]
  2. NSF-REU [1263385]
  3. National Water Research Institute Graduate Fellowship
  4. University of Colorado Department of Civil, Environmental, and Architectural Engineering Dissertation Completion Fellowship
  5. Directorate For Engineering
  6. Div Of Engineering Education and Centers [1263385] Funding Source: National Science Foundation

向作者/读者索取更多资源

Cyclohexanol, phenol, benzoic acid, and phenanthrene fractional removal (italicized words are defined within the main text) by pulverized granular activated carbon and biochar adsorption in deionized water and stormwater was independent of target-adsorbate initial concentrations (C-0) when C(0)s were below concentration thresholds. This permits a simple-modeling approach. C-0-independent removal in deionized water at low-target-adsorbate concentrations potentially suggests that DOM in the deionized water induce a competitive effect that causes deviations from the Freundlich model. The Ideal Adsorbed Solution Theory-Equivalent Background Compound model was used to determine the magnitude of concentration thresholds and the competitive effect of stormwater DOM and possibly deionized water DOM. These competing substances competitive effects were influenced by target-compound adsorbability and structure. Concentration thresholds positively correlate with competing substances competitive effect and negatively correlate with target-adsorbate-Freundlich 1/n values. In deionized water, concentration thresholds increase as target-compound adsorbability decreases. In stormwater, concentration thresholds do not correlate with adsorbability, potentially because stormwater DOM is better suited to compete for aromatic-compound-adsorption sites. The extent known-competitor adsorbates decrease target-adsorbate removal in the presence of DOM is investigated, which depends on the competing adsorbates relative adsorbabilities and if they adsorb to a different subpopulation of adsorption sites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据