4.8 Article

Incorporating Nanoscale Effects into a Continuum-Scale Reactive Transport Model for CO2-Deteriorated Cement

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 51, 期 18, 页码 10861-10871

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.7b00594

关键词

-

资金

  1. Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center - the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-05CH11231]

向作者/读者索取更多资源

Wellbore cement deterioration is critical for wellbore integrity and the safety of CO2 storage in geologic formations. Our previous experimental work highlighted the importance of the portlandite (CH)-depleted zone and the surface dissolution zone in the CO2-attacked cement. In this study, we simulated numerically the evolution of the CH-depleted zone and the dissolution of the cement surfaces utilizing a reduced-dimension (1D) reactive transport model. The approach shows that three nanoscale effects are important and had to be incorporated in a continuum-scale model to capture experimental observations: First, it was necessary to account for the fact that secondary CaCO3 precipitation does not fill the pore space completely, with the result that acidic brine continues to diffuse through the carbonated zone to form a CH-depleted zone. Second, secondary precipitation in brine begins via nucleation kinetics, and could not be described with previous models using growth kinetics alone. Third, our results suggest that the CaCO3 precipitates in the confined pore space are more soluble than those formed in brine. This study provides a new platform for a reduced dimension model for CO2 attack on cement that captures the important nanoscale mechanisms influencing macroscale phenomena in subsurface environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据