4.8 Article

Natural Attenuation in Streambed Sediment Receiving Chlorinated Solvents from Underlying Fracture Networks

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 51, 期 9, 页码 4821-4830

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.6b05554

关键词

-

资金

  1. Department of Defense Strategic Environmental Research and Development Program (SERDP project) [ER-2312]

向作者/读者索取更多资源

Contaminant discharge from fractured bedrock formations remains a remediation challenge. We applied an integrated approach to assess the natural attenuation potential of sediment that forms the transition zone between upwelling groundwater from a chlorinated solvent-contaminated fractured bedrock aquifer and the receiving surface water. In situ measurements demonstrated that reductive dechlorination in the sediment attenuated chlorinated compounds before reaching the water column. Microcosms established with creek sediment or in situ incubated Bio-Sep beads degraded C1-C3 chlorinated solvents to less-chlorinated or innocuous products. Quantitative PCR and 16S rRNA gene amplicon sequencing revealed the abundance and spatial distribution of known dechlorinator biomarker genes within the creek sediment and demonstrated that multiple dechlorinator populations degrading chlorinated C1-C3 alkanes and alkenes co-inhabit the sediment. Phylogenetic classification of bacterial and archaeal sequences indicated a relatively uniform distribution over spatial (300 m horizontally) scale, but Dehalococcoides and Dehalobacter were more abundant in deeper sediment, where 5.7 +/- 0.4 x 105 and 5.4 +/- 0.9 x 106 16S rRNA gene copies per g of sediment, respectively, were measured. The microbiological and hydrogeological characterization demonstrated that microbial processes at the fractured bedrock-sediment interface were crucial for preventing contaminants reaching the water column, emphasizing the relevance of this critical zone environment for contaminant attenuation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据