4.6 Article

Nonlocal and nonadiabatic Pauli potential for time-dependent orbital-free density functional theory

期刊

PHYSICAL REVIEW B
卷 104, 期 23, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.104.235110

关键词

-

资金

  1. U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0018343]
  2. U.S. Department of Energy (DOE) [DE-SC0018343] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

Time-dependent orbital-free density functional theory, utilizing a nonlocal and nonadiabatic Pauli potential, accurately describes the optical spectra of metallic systems and semiquantitatively for semiconductors, offering wide applicability for nonequilibrium electron and electron-nuclear dynamics of complex materials.
Time-dependent orbital-free density functional theory is an efficient ab initio method for calculating the electronic dynamics of large systems. In comparison to standard time-dependent density functional theory, it computes only a single electronic state regardless of system size, but it requires an additional time-dependent Pauli potential term. We propose a nonadiabatic and nonlocal Pauli potential whose main ingredients are the time-dependent particle and current densities. Our calculations of the optical spectra of metallic and semiconductor clusters indicate that nonlocal and nonadiabatic time-dependent orbital-free density functional theory performs accurately for metallic systems and semiquantitatively for semiconductors. This paper opens the door to wide applicability of time-dependent orbital-free density functional theory for nonequilibrium electron and electron-nuclear dynamics of complex materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据