4.5 Article

The interaction between ambush predators, search patterns of herbivores, and aggregations of plants

期刊

BEHAVIORAL ECOLOGY
卷 32, 期 6, 页码 1246-1255

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/beheco/arab091

关键词

area-restricted search; foraging mode; habitat selection; individual-based model; movement; optimal foraging; predator-prey behavioral game

向作者/读者索取更多资源

The study found that the spatial overlap between predators and prey affects their behavioral strategies, while the different ambush locations also impact plant aggregation. Herbivores adopt different movement strategies when encountering different types of predators, indicating a complex interaction between predators and prey.
While predators benefit from spatial overlap with their prey, prey strive to avoid predators. I used an individual-based simulation comprising sit-and-wait predators, widely foraging herbivores, and plants, to examine the link between predator ambush location, herbivore movement, and plant aggregation. I used a genetic algorithm to reach the best strategies for all players. The predators could ambush herbivores either inside or outside plant patches. The herbivores could use movement of varying directionality levels, with a change in directionality following the detection of plants. When the predators were fixed outside plant patches, the herbivores were selected to use a directional movement before plant encounter followed by a tortuous movement afterwards. When predators were fixed inside patches, herbivores used a continuous directional movement. Predators maintained within-patch positions when the herbivores were fixed to use the directional-tortuous movement. The predator location inside patches led to higher plant aggregations, by changing the herbivore movement. Finally, I allowed half of the predators to search for herbivores and let them compete with sit-and-wait predators located inside plant patches. When plants were clumped and herbivores used a directional-tortuous movement, with a movement shift after plant detection, ambush predators had the highest success relative to widely foraging predators. In all other scenarios, widely foraging predators did much better than ambush predators. The findings from my simulation suggest a behavioral mechanism for several observed phenomena of predator-prey interactions, such as a shorter stay by herbivores in patches when predators ambush them nearby, and a more directional movement of herbivores in riskier habitats.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据