3.8 Proceedings Paper

TinyOL: TinyML with Online-Learning on Microcontrollers

向作者/读者索取更多资源

TinyML is a growing research area focusing on democratizing deep learning for microcontrollers, but current solutions lack flexibility due to static models and limited adaptability. To address these issues, the innovative TinyOL system enables incremental on-device training on streaming data, showing effectiveness and feasibility for constrained IoT devices.
Tiny machine learning (TinyML) is a fast-growing research area committed to democratizing deep learning for all-pervasive microcontrollers (MCUs). Challenged by the constraints on power, memory, and computation, TinyML has achieved significant advancement in the last few years. However, the current TinyML solutions are based on batch/offline setting and support only the neural network's inference on MCUs. The neural network is first trained using a large amount of pre-collected data on a powerful machine and then flashed to MCUs. This results in a static model, hard to adapt to new data, and impossible to adjust for different scenarios, which impedes the flexibility of the Internet of Things (IoT). To address these problems, we propose a novel system called TinyOL (TinyML with Online-Learning), which enables incremental on-device training on streaming data. TinyOL is based on the concept of online learning and is suitable for constrained IoT devices. We experiment TinyOL under supervised and unsupervised setups using an autoencoder neural network. Finally, we report the performance of the proposed solution and show its effectiveness and feasibility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据