4.7 Article

Effects of acetylacetone on the photoconversion of pharmaceuticals in natural and pure waters

期刊

ENVIRONMENTAL POLLUTION
卷 225, 期 -, 页码 691-699

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2017.01.089

关键词

Acetylacetone; PPCPs; Photolysis; Tetracycline; Toxicity

资金

  1. National Natural Science Foundation of China [21522702]
  2. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

Acetylacetone (AcAc) has proven to be a potent photo-activator in the degradation of color compounds. The effects of AcAc on the photochemical conversion of five colorless pharmaceuticals were for the first time investigated in both pure and natural waters with the UV/H2O2 process as a reference. In most cases, AcAc played a similar role to H2O2. For example, AcAc accelerated the photodecomposition of carbamazepine, oxytetracycline, and tetracycline in pure water. Meanwhile, the toxicity of tetracyclines and carbamazepine were reduced to a similar extent to that in the UV/H2O2 process. However, AcAc worked in a way different from that of H2O2. Based on the degradation kinetics, solvent kinetic isotope effect, and the inhibiting effect of O-2, the underlying mechanisms for the degradation of pharmaceuticals in the UV/AcAc process were believed mainly to be direct energy transfer from excited AcAc to pharmaceuticals rather than reactive oxygen species-mediated reactions. In natural waters, dissolved organic matter (DOM) played a crucial role in the photoconversion of pharmaceuticals. The role of H2O2 became negligible due to the scavenging effects of DOM and inorganic ions. Interestingly, in natural waters, AcAc first accelerated the photodecomposition of pharmaceuticals and then led to a dramatic reduction with the depletion of dissolved oxygen. Considering the natural occurrence of diketones, the results here point out a possible pathway in the fate and transport of pharmaceuticals in aquatic ecosystems. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据