4.6 Article

Inhibiting bacterial quorum sensing arrests coral disease development and disease-associated microbes

期刊

ENVIRONMENTAL MICROBIOLOGY
卷 20, 期 2, 页码 645-657

出版社

WILEY
DOI: 10.1111/1462-2920.13991

关键词

-

资金

  1. National Science Foundation [1458158]
  2. Division Of Ocean Sciences [1458158] Funding Source: National Science Foundation

向作者/读者索取更多资源

Among the greatest threats to coral reefs are coral epizootics, which are increasing in frequency and severity across many reef ecosystems. In particular, white band disease (WBD) has devastated Caribbean acroporid populations since its initial outbreak in 1979. However, despite its widespread and damaging effects, the aetiology of WBD remains largely unresolved. Here, we examine the role of quorum sensing within bacterial communities associated with WBD-infected Acropora cervicornis. Microbial communities isolated from WBD-infected corals were exposed to quorum sensing inhibitor (QSI) - a N-acyl homoserine lactone autoinducer antagonist - and then dosed onto healthy test corals. WBD-associated bacteria supplemented with QSI lost the ability to establish disease, while healthy corals exposed to uninhibited WBD bacterial communities became infected within two days. Microbial 16S rRNA metagenomic sequencing analyses were then used to identify shifts in bacterial communities due to QSI exposure on WBD-associated bacterial communities. Our results demonstrated that Vibrionaceae and Flavobacteriaceae abundances were strongly inhibited by the addition of QSI to WBD-infected corals, whereas putative coral symbiont Endozoicomonas and Halomonadaceae abundances decrease dramatically in diseased corals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据