4.6 Article

Influence of drill mud on the microbial communities of sandstone rocks and well fluids at the Ketzin pilot site for CO2 storage

期刊

ENVIRONMENTAL EARTH SCIENCES
卷 76, 期 2, 页码 -

出版社

SPRINGER
DOI: 10.1007/s12665-016-6381-z

关键词

Drill mud; CO2 storage; Reduced injectivity; Sulfate-reducing bacteria

资金

  1. Federal Ministry for Education and Research [03G0760A-F, 03SF0434B]

向作者/读者索取更多资源

At a pilot site for CO2 storage in Ketzin (Germany), a drastic decrease in injectivity occurred in a well intended for injection. This was attributed to an obstruction of the pore throats due to microbial degradation of the organic drill mud and subsequent iron sulfide (FeS) precipitation in the highly saline brine (240 g L-1). To better understand the biogeochemical processes, the response of the autochthonous microbial community to drill mud exposure was investigated. Pristine cores of two aquifers with different salinity were incubated under simulated in situ conditions (50 bar, 40 degrees C and 45 bar, 25 degrees C, respectively) and CO2 atmosphere. For the first time, rock cores obtained from the CO2 plume of the storage formation were investigated. The influence of acetate as a biodegradation product of drill mud polymers and the effectiveness of a biocide were additionally tested. Increased microbial diversities were observed in all longterm (8-20 weeks) incubations, even including biocide. Biofilm-like structures and small round-shaped minerals of probable microbiological origin were found. The results indicate that the microbial community remains viable after long-term CO2 exposure. Microorganisms hydrolyzing cellulose polymers (e.g., Burkholderia spp., Variovorax spp.) biodegraded organic components of the drill mud and most likely produced low molecular weight acids. Although the effects of drill mud were less strong as observed in situ, it was demonstrated that acetate supports the growth of sulfate-reducing bacteria (i.e., Desulfotomaculum spp.). The microbial-induced precipitation of amorphous FeS reduced the injectivity in the near-well area. Therefore, when using organic drill mud, the well must be cleaned intensively to minimize the hazards of bacterial stimulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据